Transformations of matricial α -Stieltjes non-negative definite sequences
نویسندگان
چکیده
منابع مشابه
Stieltjes Moment Sequences and Positive Definite Matrix Sequences
For a certain constant δ > 0 (a little less than 1/4), every function f : N0 → ]0,∞[ satisfying f(n)2 ≤ δf(n − 1)f(n + 1), n ∈ N, is a Stieltjes indeterminate Stieltjes moment sequence. For every indeterminate moment sequence f : N0 → R there is a positive definite matrix sequence (an) which is not of positive type and which satisfies tr(an+2) = f(n), n ∈ N0. For a certain constant ε > 0 (a lit...
متن کاملNumerical Solution of the Stable, Non-negative Definite Lyapunov Equation
is called the continuous-time Lyapunov equation and is of interest in a number of areas of control theory such as optimal control and stability (Barnett, 1975; Barnett & Storey, 1968). The equation has a unique Hermitian solution, X, if and only if Xt + X~j ^ 0 for all i and j (Barnett, 1975). In particular if every Xt has a negative real part, so that A is stable, and if C is non-negative defi...
متن کاملOn powers of Stieltjes moment sequences, I
For a Bernstein function f the sequence sn = f(1)·. . .·f(n) is a Stieltjes moment sequence with the property that all powers sn, c > 0 are again Stieltjes moment sequences. We prove that sn is Stieltjes determinate for c ≤ 2, but it can be indeterminate for c > 2 as is shown by the moment sequence (n!)c, corresponding to the Bernstein function f(s) = s. Nevertheless there always exists a uniqu...
متن کاملNegative Definite Random Variables and Non-linear Combinatorics
Let us suppose we are given a polytope H. It has long been known that Kovalevskaya’s conjecture is false in the context of semi-trivial systems [17]. We show that σ (∞∪Rg,b)→ wT (1c,∞) ũ (α · 1, . . . , ρ̃−∞) ∧ · · · × exp −1 (γ′) < {√ 2: b (−−∞) ≤P ( 1 e , . . . , F ′′6 ) ± tan ( e )} . In [17], the main result was the classification of Kummer subrings. In [17], the authors address the existenc...
متن کاملOn powers of Stieltjes moment sequences, II
We consider the set of Stieltjes moment sequences, for which every positive power is again a Stieltjes moment sequence, we and prove an integral representation of the logarithm of the moment sequence in analogy to the Lévy-Khintchine representation. We use the result to construct product convolution semigroups with moments of all orders and to calculate their Mellin transforms. As an applicatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2013
ISSN: 0024-3795
DOI: 10.1016/j.laa.2013.10.002